Factor

Satellite data record shows climate changes impact on fires

11 September 2019 | Adaptation

While every fire needs a spark to ignite and fuel to burn, it's the hot and dry conditions in the atmosphere that determine the likelihood of a fire starting, its intensity and the speed at which it spreads. Over the past several decades, as the world has increasingly warmed, so has its potential to burn.

Since 1880, the world has warmed by 1.9 degrees Fahrenheit, with the five warmest years on record occurring in the last five years. Since the 1980s, the wildfire season has lengthened across a quarter of the world's vegetated surface, and in some places like California, fire has become nearly a year-round risk. 2018 was California's worst wildfire season on record, on the heels of a devasting 2017 fire season. In 2019, wildfires have already burned 2.5 million acres in Alaska in an extreme fire season driven by high temperatures, which have also led to massive fires in Siberia.

Whether started naturally or by people, fires worldwide and the resulting smoke emissions and burned areas have been observed by NASA satellites from space for two decades. Combined with data collected and analyzed by scientists and forest managers on the ground, researchers at NASA, other U.S. agencies and universities are beginning to draw into focus the interplay between fires, climate and humans.

"Our ability to track fires in a concerted way over the last 20 years with satellite data has captured large-scale trends, such as increased fire activity, consistent with a warming climate in places like the western U.S., Canada and other parts of Northern Hemisphere forests where fuels are abundant," said Doug Morton, chief of the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Where warming and drying climate has increased the risk of fires, we've seen an increase in burning."

A Hotter, Drier World

High temperatures and low humidity are two essential factors behind the rise in fire risk and activity, affecting fire behavior from its ignition to its spread. Even before a fire starts they set the stage, said Jim Randerson, an Earth system scientist at the University of California, Irvine who studies fires both in the field and with satellite data.

He and his colleagues studied the abundance of lightning strikes in the 2015 Alaskan fire season that burned a record 5.1 million acres. Lightning strikes are the main natural cause of fires. The researchers found an unusually high number of lightning strikes occurred, generated by the warmer temperatures that cause the atmosphere to create more convective systems -- thunderstorms -- which ultimately contributed to more burned area that year.

Hotter and drier conditions also set the stage for human-ignited fires. "In the Western U.S., people are accidentally igniting fires all the time," Randerson said. "But when we have a period of extreme weather, high temperatures, low humidity, then it's more likely that typical outdoor activity might lead to an accidental fire that quickly gets out of control and becomes a large wildfire."

For example, in 2018 sparks flying from hammering a concrete stake into the ground in 100-degree Fahrenheit heat and sparks from a car's tire rim scraping against the asphalt after a flat tire were the causes of California's devastatingly destructive Ranch and Carr Fires, respectively. These sparks quickly ignited the vegetation that was dried out and made extremely flammable by the same extreme heat and low humidity, which research also shows can contribute to a fire's rapid and uncontrollable spread, said Randerson. The same conditions make it more likely for agricultural fires to get out of control.

A warming world also has another consequence that may be contributing to fire conditions persisting over multiple days where they otherwise might not have in the past: higher nighttime temperatures.

"Warmer nighttime temperature allow fires to burn through the night and burn more intensely, and that allows fires to spread over multiple days where previously, cooler nighttime temperatures might have weakened or extinguished the fire after only one day," Morton said.

The Human Factor

In studying the long-term trends of fires, human land management is as important to consider as any other factor. Globally, someplace on Earth is always on fire -- and most of those fires are set by people, either accidentally in wildlands, or on purpose, for example, to clear land or burn agricultural fields after the harvest to remove crop residues.

But not all fires behave the same way. Their behavior depends on the fuel type and the how people are changing the landscape. While fire activity has gotten worse in northern latitude forests, research conducted by Randerson and Morton has shown that despite climate conditions that favor fires, the number of fires in grassland and savanna ecosystems worldwide are declining, contributing to an overall decline in global burned area. The decline is due to an increased human presence creating new cropland and roads that serve as fire breaks and motivate the local population to fight these smaller fires, said Morton.

"Humans and climate together are really the dual factors that are shaping the fires around the world. It's not one or the other," Randerson said.

 

Source: Science Daily